
1. MOTIVATION

• Semiconductor quantum dot qubits are controlled via gate voltages

• Plunger gates (P1 - P4 in Fig. 1) control the dot potentials

• Barrier gates (B1 - B5 in Fig. 1) control the tunnel barriers

• Tuning large numbers of qubits requires automation

• Correct number of charges must be trapped in each quantum dot

• Number of charges is derived from charge transitions in charge stability 

diagrams (CSDs), in this case measured using a sensor dot

→ Automatic detection of charge transitions enables tuning automation

 → Goals: good generalization and low complexity for scalability
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2. METHODS / ALGORITHM DEVELOPMENT

CSD Data

• Simulated data from the geometric SimCATS model [2] for parameter 

optimization and training

• Pink, white & random telegraph noise, transition blurring, and dot jumps

• Random variations of charge transitions, sensor, and distortions

• 10.000 randomly sampled configurations with 100 CSDs each

• Simulated data + experimental data for validation

Fig. 4: Examples of simulated CSDs with corresponding ground truth. 

Fig. 1: Example of the gate layout of a 

semiconductor quantum dot sample (by T. 

Hangleiter, RWTH, similar to [1]). The 

blue/orange circles illustrate the regions in 
which sensor/quantum dots are formed.

Fig. 2: Example of a CSD for a well 

behaving double quantum dot. The lines 

indicate a transition of electrons into or out 

of a dot. In parentheses: exemplary double 

quantum dot occupation numbers.

4. OUTLOOK

• Final evaluation & selection of machine learning and traditional approaches

• Testing with further experimental data

• SiGe sample

• Live in the experiment

3. EXEMPLARY RESULTS

Canny Approach (Traditional, Gradient Based)

Tiny UNet (Machine Learning, Convolution Based)

• Model size reduced by more than 99% (compared to classical UNet)
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Model Type Model Size Jaccard 

Similarity 

Dice Score Inference Time 

(Nvidia L4)

U-Net (Bilinear 

Upsampling)

67,425 params 0.872 0.915 1.15 ms

Fig. 5: Charge transition detection on experimental data from the GaAs qubit sample 

shown in Fig. 1. Left CSD: no valuable information is extracted; center CSD: RTN is 

detected as charge transition and multiple transitions are missing; right CSD: the majority 
of charge transitions is detected.

Fig. 6: Charge transition detection on the same experimental data as shown in Fig. 5. All 

charge transitions are detected. The network ignores the RTN in the center CSD without 
leading to a wrong detection. 

Tab. 1: Statistics for a tiny version of a UNet model developed at ZEA-2. Metrics have 
been calculated on a simulated validation set.

Traditional approaches

• Gradient based

• Phase congruency based

(novel approach)

• Mixed approaches
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Fig. 3: Examples of measured CSDs with typical distortions. CSDs may feature only weak 

structures or are affected by strong white noise, random telegraph noise (RTN), and pink 

noise.

Fig. 7: Examples of single dot plunger vs. barrier CSDs from a SiGe sample.

Machine learning

• Convolution based

• Transformer based

• State space model based

• Diffusion based
• Further complexity reduction & improvement of robustness

• Automated machine learning (AutoML)

• Hyperparameter optimization (HPO)

• Neural Architecture Search (NAS)

• Introduction of verification strategies & explainable AI (XAI) 

→ Long term goal: hardware implementation
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